
SDE Documentation
Release 0.3.0

M. Schauer

Jul 05, 2017

Contents

1 Layout 1

2 Method 3

3 Data structures 5

4 Location of the documentation 7
4.1 Module Diffusion . 7
4.2 Module Schauder . 8
4.3 Module NonparBayes . 10
4.4 Module Lyap.jl . 12
4.5 Module Randm . 12
4.6 LinProc . 13

5 Indices and tables 17

i

ii

CHAPTER 1

Layout

The package contains the following modules:

Diffusion Generate Ito processes and diffusions

NonparBayes Nonparametrically estimate the drift of a diffusion

Schauder Provides rudimentary finite element methods and Schauder basis for NonparBayes

Lyap Computes the solution of the continuous Lyapunov equation, useful for the generation of linear processes

Randm Random symmetric, positive definite, stable matrix for testing purposes.

LinProc Homogeneous vector linear processes with additive noise

1

SDE Documentation, Release 0.3.0

2 Chapter 1. Layout

CHAPTER 2

Method

The producure in NonparBayes is a Julia implementation of nonparametric Bayesian inference for “continuously”
observed one dimensional diffusion processes with unit diffusion coefficient. The drift is modeled as linear combi-
nation of hierarchical Faber–Schauder basis functions with a Gaussian prior on the coefficients. This incorporates a
Brownian motion like prior on the drift function. The posterior is then computed using Gaussian conjugacy.

This is work in progress.

3

SDE Documentation, Release 0.3.0

4 Chapter 2. Method

CHAPTER 3

Data structures

I did not introduce type definitions for stochastic processes and use vectors/arrays, so it should be easy do wrap
Dataframes around everything. For the meanwhile, I like the natural notation obtained by having just vectors/arrays
for dW and dt

N = 100 t = linspace(0., 1., N) dt = diff(t) X = ito(2dt + 2dW1(dt))

5

SDE Documentation, Release 0.3.0

6 Chapter 3. Data structures

CHAPTER 4

Location of the documentation

https://sdejl.readthedocs.org

Contents:

Module Diffusion

Introduction

The functions in this module operate on three conceptual different objects, (although they are currently just represented
as vectors and arrays.)

Stochastic processes, denoted x, y, w are arrays of values which are sampled at distance dt, ds, where dt, ds are ei-
ther scalar or Vectors length(dt)=size(W)[end]. Stochastic differentials are denoted dx, dw etc., and are first
differences of stochastic processes. Finally, t can denote the total time or correspond to a vector of size(W)[end]
sampling time poins.

Note the following convention: In analogy with the definition of the Ito integral,

intxdw[i] = x[i]](w[i+1]-w[i]) (== x[i]dw[i])

and

length(w) = length(dw) + 1

Reference

Diffusion.brown1(u, t, n::Integer)
Compute n equally spaced samples of 1d Brownian motion in the interval [0,t], starting from point u

Diffusion.brown(u, t, d::Integer, n::Integer)
Simulate n equally spaced samples of d-dimensional Brownian motion in the interval [0,t], starting from
point u

7

https://sdejl.readthedocs.org

SDE Documentation, Release 0.3.0

Diffusion.dW1(t, n::Integer)
Diffusion.dW(t, d::Integer, n::Integer)

Simulate a 1-dimensional (d-dimensional) Wiener differential with n values in the the interval [0,t], starting
from point u

Diffusion.dW(dt::Vector, d::Integer)
Simulate a d-dimensional Wiener differential sampled at time points with distances given by the vector dt

Diffusion.ito(y, dx)
Diffusion.ito(dx)
Diffusion.cumsum0(dx)

Integrate a valued stochastic process with respect to a stochastic differential. R, R^2 (d rows, n columns), R^3.

ito(dx) is a shortcut for ito(ones(size(dx)[end], dx). So ito(dx) is just a cumsum0 function
which is a inverse to dx = diff([0, x1, x2, x3,...]).

..(y, dx)
Diffusion.ydx(y, dx)

y .. dx returns the stochastic differential ydx defined by the property

ito(ydx) == ito(y, dx)

Diffusion.bb(u, v, t, n)
Simulates n equidistant samples of a Brownian bridge from point u to v in time t

Diffusion.dWcond1(v, t, n)
Simulates n equidistant samples of a “bridge noise”: that is a Wiener differential dW conditioned on W(t) =
v

Diffusion.aug(dw, dt, n)
Diffusion.aug(dt, n)

Take Wiener differential sampled at dt and return Wiener differential subsampled n times between each obser-
vation with new length length(dw)*n. aug(dt,n) computes the corresponding subsample of times.

Diffusion.quvar(x)
Computes quadratic variation of x.

Diffusion.bracket(x)
Diffusion.bracket(x, y)

Computes quadratic variation process of x (of x and y).

Diffusion.euler(t0, u, b, sigma, dt, dw)
Diffusion.euler(t0, u, b, sigma, dt)

Simulates a 1-dimensional diffusion process using the Euler-Maruyama approximation with drift b(t,x) and
diffusion coefficient sigma(t,x) starting in (t0, u) using dt and given Wiener differential dw.

Module Schauder

Introduction

In the following hat(x) is the piecewise linear function taking values values (0,0), (0.5,1), (1,0) on the
interval [0,1] and 0 elsewhere.

The Schauder basis of level L > 0 in the interval [a,b] can be defined recursively from n = 2^L-1 classical
finite elements 𝜓𝑖(𝑥) on the grid

a + (1:n)/(n+1)*(b-a).

Assume that f is expressed as linear combination

8 Chapter 4. Location of the documentation

SDE Documentation, Release 0.3.0

𝑓(𝑥) =
∑︀𝑛

𝑖=1 𝑐𝑖𝜓𝑖(𝑥)

with

𝜓2𝑗−1(𝑥) = ℎ𝑎𝑡(𝑛𝑥− 𝑗 + 1) for 𝑗 = 1 . . . 2𝐿−1

and

𝜓2𝑗(𝑥) = ℎ𝑎𝑡(𝑛𝑥− 𝑗 + 1/2) for 𝑗 = 1 . . . 2𝐿−1 − 1

Note that these coefficients are easy to find for the finite element basis, just

function fe_transf(f, a,b, L)
n = 2^L-1
return map(f, a + (1:n)/(n+1)*(b-a))

end

Then the coefficients of the same function with respect to the Schauder basis

𝑓(𝑥) =
∑︀𝑛

𝑖=1 𝑐𝑖𝜑𝑖(𝑥)

where for L = 2

𝜑2(𝑥) = 2ℎ𝑎𝑡(𝑥)

𝜑1(𝑥) = 𝜓1(𝑥) = ℎ𝑎𝑡(2𝑥)

𝜑3(𝑥) = 𝜓3(𝑥) = ℎ𝑎𝑡(2𝑥− 1)

can be computed directly, but also using the recursion

𝜑2(𝑥) = 𝜓1(𝑥) + 2𝜓2(𝑥) + 𝜓2(𝑥)

This can be implemented inplace (see pickup()), and is used throughout.

for l in 1:L-1
b = sub(c, 2^l:2^l:n)
b[:] *= 0.5
a = sub(c, 2^(l-1):2^l:n-2^(l-1))
a[:] -= b[:]
a = sub(c, 2^l+2^(l-1):2^l:n)
a[:] -= b[1:length(a)]

end

Reference

Schauder.pickup!(x)
Inplace computation of 2^L-1 Schauder-Faber coefficients from 2^L-1 overlapping finite-element coefficients
x.

– inverse of Schauder.drop

– L = level(xj)

Schauder.drop!(x)
Inplace computation of 2^L-1 finite element coefficients from 2^L-1 Faber schauder coefficients x.

– inverse of Schauder.pickup

Schauder.finger_permute(x)
Reorders vector x or matrix A according to the reordering of the elements of a Faber-Schauder-basis from left
to right, from bottom to top.

4.2. Module Schauder 9

SDE Documentation, Release 0.3.0

Schauder.finger_pm(L, K)
Returns the permuation used in finger_permute. Memoized reordering of faber schauder elements from
low level to high level. The last K elements/rows are left untouched.

Schauder.level(x)

Gives the no. of levels of the biggest Schauder basis with less then length(x) elements. level(x) =
ilogb(size(x,1)+1)

Schauder.level(x, K)
Gives the no. of levels l of the biggest Schauder basis with less then length(x) elements and the number of
additional elements n-2^l+1.

Schauder.vectoroflevels(L, K)
Gives a vector with the level of the hierarchical elements.

Schauder.hat(x)
Hat function. Piecewise linear functions with values (-inf,0), (0,0),(0.5,1), (1,0), (inf,0). – x vector or number

Module NonparBayes

Introduction

The procedure is as follows. Consider the diffusion process (𝑥𝑡 : 0 ≤ 𝑡 ≤ 𝑇) given by

𝑑𝑥𝑡 = 𝑏(𝑥𝑡)𝑑𝑡+ 𝑑𝑤𝑡

where the drift b is expressed as linear combination

𝑓(𝑥) =
∑︀𝑛

𝑖=1 𝑐𝑖𝜑𝑖(𝑥)

(see Module Schauder) and prior distribution on the coefficients

𝑐𝑖 ∼ 𝑁(0, 𝜉𝑖)

Then the posterior distribution of 𝑏 given observations 𝑥𝑡 is given by

𝑐𝑖|𝑥𝑠 ∼ 𝑁(𝑊−1𝜇,𝑊−1) 𝑊 = Σ + (diag(𝜉))−1,

with the nxn-matrix

Σ𝑖𝑗 =
∫︀ 𝑇

0
𝜑𝑖(𝑥𝑡)𝜑𝑗(𝑥𝑡)𝑑𝑡

and the n-vector

𝜇𝑖 =
∫︀ 𝑇

0
𝜑𝑖(𝑥𝑡)𝑑𝑥𝑡.

Using the recursion detailed in Module Schauder, one rather computes

Σ′
𝑖𝑗 =

∫︀ 𝑇

0
𝜓𝑖(𝑥𝑡)𝜓𝑗(𝑥𝑡)𝑑𝑡

and the n-vector

𝜇′
𝑖 =

∫︀ 𝑇

0
𝜓𝑖(𝑥𝑡)𝑑𝑥𝑡

and uses pickup_mu!(mu) and pickup_Sigma!(Sigma) to obtain 𝜇 and Σ.

Optional additional basis functions

One can extend the basis by additional functions, implemented are variants. B1 includes a constant, B2 two linear
functions

10 Chapter 4. Location of the documentation

SDE Documentation, Release 0.3.0

B1 𝜑1 . . . 𝜑𝑛, 𝑐

B2 𝜑1 . . . 𝜑𝑛,max(1 − 𝑥, 0),max(𝑥, 0)

To compute mu, use

mu = pickup_mu!(fe_mu(y,L, 0))
mu = fe_muB1(mu, y);

or

mu = pickup_mu!(fe_mu(y,L, 0))
mu = fe_muB2(mu, y);

Reference

Functions taking y` without parameter [a,b] expect ``y to be shifted into the intervall [0,1].

NonparBayes.pickup_mu!(mu)
computes mu from mu’

NonparBayes.drop_mu!(mu)
Computes mu’ from mu.

NonparBayes.pickup_Sigma!(Sigma)
Transforms Sigma’ into Sigma.

NonparBayes.drop_Sigma!(Sigma)
Transforms Sigma into Sigma’.

NonparBayes.fe_mu(y, L, K)
Computes mu’ from the observations y using 2^L-1 basis elements and returns a vector with K trailing zeros
(in case one ones to customize the basis.

NonparBayes.fe_muB1(mu, y)
Append 𝜇𝑛+1 =

∫︀ 𝑇

0
𝜑𝑛+1𝑑𝑥𝑡 with 𝜑𝑛+1 = 1.

NonparBayes.fe_muB2(mu, y)
Append 𝜇𝑛+1 =

∫︀ 𝑇

0
𝜑𝑛+1𝑑𝑥𝑡 with 𝜑𝑛+1 = max(1 − 𝑥, 0) and 𝜇𝑛+2 =

∫︀ 𝑇

0
𝜑𝑛+2𝑑𝑥𝑡 with 𝜑𝑛+2 = max(𝑥, 0)

NonparBayes.fe_Sigma(y, dt, L)
Computes the matrix Sigma’ from the observations y uniformly spaced at distance dt using 2^L-1 basis
elements.

NonparBayes.bayes_drift(x, dt, a, b, L, xirem, beta, B)
Performs estimation of drift on observations x in [a,b] spaced at distance dt using the Schauder basis of level L
and level wise coefficients decaying at rate beta. A Brownian motion like prior is obtained for beta= 0.5. The
K remaining optional basiselements have variance xirem.

The result is returned as [designp coeff se] where coeff are coefficients of finite elements with max-
imum at the designpoints designp and standard error se.

Observations outside [a,b] may influence the result through phi_{n+1}, ..., phi_{n+K}

NonparBayes.visualize_posterior(post[, truedrift])
Plot 2r*se wide marginal credibility bands, where post is the result of bayes_drift and truedrift the true drift
(if known :-)).

4.3. Module NonparBayes 11

SDE Documentation, Release 0.3.0

Module Lyap.jl

Documentation

DESCRIPTION Solves the real matrix equation A’X + XA = C, where A and C are constant matrices of
dimension n x n with C=C’. The matrix A is transformed into upper Schur form and the transformed
system is solved by back substitution. The option is provided to input the Schur form directly and
bypass the Schur decomposition. This equation is also know as continuous Lyapunov equation.

The method of Bartels and Stewart is used. The system is first reduced such that A is in upper real
schur form. The resulting triangular system is solved via back-substitution. Has a unique solution,
if A and -A have no common eigenvalues, which is guaranteed if A is stable (and the real part of
each eigenvalue is negative).

HISTORY The classic ACM algorithm from Bartels and Stewart was implemented E. Armstrong as part
of ORACLS – optimal regulator algorithms for the control of linear systems. The implementation
from the nasa cosmic archive is reported to be in the public domain, under the terms of Title 17,
Chapter 1, Section 105 of the US Code. This is rather direct translation of forementioned implemen-
tation into Julia, put under MIT licence as Julia.

REFERENCES

• Bartels, R.H.; and Stewart, G.W.: Algorithm 432 - Solution of the Matrix Equation AX + XB =
C. Commun. ACM, vol. 15, no. 9, Sept. 1972, pp. 820-826.

SEE ALSO atxpxa in ORACLS, strsyl, dtrsyl in LAPACK, lyap in GNU Octave

Reference

Lyap.issquare(a)
Checks if matrix a is square.

Lyap.lyap(a, cc)
Solves the real matrix equation A’X + XA = C, where A and C are constant matrices of dimension n x n
with C=C’. The matrix A is transformed into upper Schur form and the transformed system is solved by back
substitution. The option is provided to input the Schur form directly and bypass the Schur decomposition. This
equation is also know as continuous Lyapunov equation.

The method of Bartels and Stewart is used. The system is first reduced such that A is in upper real schur form.
The resulting triangular system is solved via back-substitution. Has a unique solution, if A and -A have no
common eigenvalues, which is guaranteed if A is stable (and the real part of each eigenvalue is negative).

Lyap.symslv(a, c)
Solves A'*x + x*A = C, where C is symmetric and A is in upper real schur form. via back substitution

Lyap.syl(a, b, c)
Solves the Sylvester equation AX + XB = C, where C is symmetric and A and -B have no common eigenval-
ues using (inefficient) algebraic approach via the Kronecker product, see http://en.wikipedia.org/wiki/Sylvester_
equation

Module Randm

Introduction

Random matrices for testing purposes. I did not figure out the actual distributions the matrices are drawn from.

12 Chapter 4. Location of the documentation

http://en.wikipedia.org/wiki/Sylvester_equation
http://en.wikipedia.org/wiki/Sylvester_equation

SDE Documentation, Release 0.3.0

Reference

Randm.randposdef(d)
Random positive definite matrix of dimension d.

Randm.randstable(d)
Random stable matrix (matrix with eigenvalues with negative real part) with dimension d.

Randm.randunitary(d)
Random unitary matrix of dimension d.

Randm.randorth(d)
Orthogonal matrix drawn according to the Haar measure on the group of orthogonal matrices.

Randm.randnormal(d)
Random normal matrix.

LinProc

Introduction

This module covers

• The simulation of multivariate diffusion processes with a simple Euler scheme

• the simulation of (Vector) Ornstein–Uhlenbeck processes

• the simulation of Ornstein–Uhlenbeck bridges

• mean and covariance functions and transition density of Ornstein–Uhlenbeck processes

• the Monte Carlo simulation of Diffusion bridges

A multivariate diffusion process is the solution to the stochastic differential equation (SDE)

𝑑𝑋𝑡 = 𝑏(𝑡,𝑋𝑡)𝜎(𝑡,𝑋𝑡)𝑑𝑊𝑡

where W_t is a d-dimension Wiener process, b is a vector valued drift function and a = sigma sigma' the
diffusion matrix. The function

eulerv(t0, u, b(s,x), sigma(s,x), Dt, DW::Matrix)

implements the multivariate euler scheme, starting in the point u the same conventions as in module Diffusion
apply.

A vector linear process (Ornstein–Uhlenbeck process) is of the special form

𝑑𝑋𝑡 = 𝐵𝑋𝑡 + 𝛽 + 𝜎𝑑𝑊𝑡

where B is a stable matrix and beta a vector, A = sigma sigma'

A conditional vector linear processes (Ornstein–Uhlenbeck bridges so to say) ending at time T in point v are given by

𝑑𝑋⋆
𝑡 = 𝐵𝑋𝑡 + 𝛽 +𝐴𝑟(𝑠,𝑋⋆

𝑡) + 𝜎𝑑𝑊𝑡

where 𝑟(𝑡, 𝑥) = grad𝑥 log 𝑝(𝑡, 𝑥;𝑇, 𝑣) and p is the transition density of the corresponding linear process X.

The parameter lambda is the solution to the Lyapunov equation B lambda + lambda B' = -A, see module
Lyap,

lambda = lyap(B', -A)

4.6. LinProc 13

SDE Documentation, Release 0.3.0

If B = 0, lambda = lyap(B',-A) is not defined, provide lambda = inv(a) as argument to the functions
instead.

Reference

LinProc.mu(h, x, B, beta)
Expectation 𝐸𝑥(𝑋𝑡)

LinProc.K(h, B, lambda)
Covariance matrix 𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡+ℎ)

LinProc.r(h, x, v, B, beta, lambda)
Returns 𝑟(𝑡, 𝑥) = grad𝑥 log 𝑝(𝑡, 𝑥;𝑇, 𝑣) where p is the transition density of the linear process, used by Bstar.

LinProc.H(h, B, lambda)
Negative Hessian of log 𝑝(𝑡, 𝑥;𝑇, 𝑣) as a function of x.

LinProc.bstar(T, v, b, beta, a, lambda)
Returns the drift function of a vector linear process bridge which end at time T in point v.

LinProc.bcirc(T, v, b, beta, a, lambda)
Drift for guided proposal derived from a vector linear process bridge which end at time T in point v.

LinProc.llikeliXcirc(t, T, Xcirc, b, a, B, beta, lambda)
Loglikelihood (log weights) of Xcirc with respect to Xstar.

t, T – timespan Xcirc – bridge proposal (drift Bcirc and diffusion coefficient sigma) b, sigma –
diffusion coefficient sigma target B, beta – drift b(x) = Bx + beta of Xtilde lambda – solution of the
lyapunov equation for Xtilde

LinProc.lp(h, x, y, b, beta, lambda)
Returns 𝑙𝑜𝑔𝑝(𝑡, 𝑥;𝑇, 𝑦), the log transition density of the linear process, h = T - t

LinProc.sample_p(h, x, b, beta, lambda)
Samples from the transition density of the linear process, h = T - t.

LinProc.linexact(u, B, beta, lambda, dt)
Simulate linear process starting in u on a discrete grid dt from its transition probability, corresponding to drift
parameters B, beta and Lyapunov matrix lambda.

LinProc.linll(X, B, beta, lambda, dt)
Compute log likelihood evaluated in B, beta and Lyapunov matrix lambda for a observed linear process on a
discrete grid dt from its transition density.

LinProc.lp0(h, x, y, mu, gamma)
Returns 𝑙𝑜𝑔𝑝(𝑡, 𝑥;𝑇, 𝑦), the log transition density of a Brownian motion with drift mu and diffusion
a=inv(gamma), h = T - t

LinProc.sample_p0(h, x, mu, l)
Samples from the transition density a affine Brownian motion. Takes the Cholesky factor as argument.

l = chol(a)

LinProc.eulerv(t0, u, v, b(s, x), sigma(s, x), Dt, DW::Matrix)
LinProc.eulerv(t0, u, b, sigma, dt, dw::Matrix) = eulerv(t0, u, NaN, b, sigma, dt, dw::Matrix)

Multivariate euler scheme, starting in u, fixing X[N] = v if v!=NaN (this makes sense, if b pulls X towards v.).
dw – Wiener differential with n values in the the interval [t0,sum(dt)] sampled at timepoints t0+Dt[1],
t0 + Dt[1] + Dt[2], ... b, sigma – drift and diffusion coefficient.

Example:

14 Chapter 4. Location of the documentation

SDE Documentation, Release 0.3.0

Dt = diff(linspace(0., T, N)) DW = randn(2, N-1) .* sqrt(dt) dt = Dt[1] yy = euler(0.0, u, b, sigma,
Dt, DW)

LinProc.stable(Y, d, ep)
Return real stable d-dim matrix with real eigenvalues smaller than ep parametrized with a vector of length d*d,

For maximum likelihood estimation we need to search the maximum over all stable matrices. These are matrices
with eigenvalues with strictly negative real parts. We obtain a dxd stable matrix as difference of a antisymmetric
matrix and a positive definite matrix.

4.6. LinProc 15

SDE Documentation, Release 0.3.0

16 Chapter 4. Location of the documentation

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

17

SDE Documentation, Release 0.3.0

18 Chapter 5. Indices and tables

Index

Symbols
..() (in module Diffusion), 8

A
aug() (in module Diffusion), 8

B
bayes_drift() (in module NonparBayes), 11
bb() (in module Diffusion), 8
bcirc() (in module LinProc), 14
bracket() (in module Diffusion), 8
brown() (in module Diffusion), 7
brown1() (in module Diffusion), 7
bstar() (in module LinProc), 14

C
cumsum0() (in module Diffusion), 8

D
drop

() (in module Schauder), 9
drop_mu

() (in module NonparBayes), 11
drop_Sigma

() (in module NonparBayes), 11
dW() (in module Diffusion), 7, 8
dW1() (in module Diffusion), 7
dWcond1() (in module Diffusion), 8

E
euler() (in module Diffusion), 8
eulerv() (in module LinProc), 14

F
fe_mu() (in module NonparBayes), 11
fe_muB1() (in module NonparBayes), 11
fe_muB2() (in module NonparBayes), 11
fe_Sigma() (in module NonparBayes), 11
finger_permute() (in module Schauder), 9

finger_pm() (in module Schauder), 9

H
H() (in module LinProc), 14
hat() (in module Schauder), 10

I
issquare() (in module Lyap), 12
ito() (in module Diffusion), 8

K
K() (in module LinProc), 14

L
level() (in module Schauder), 10
linexact() (in module LinProc), 14
linll() (in module LinProc), 14
llikeliXcirc() (in module LinProc), 14
lp() (in module LinProc), 14
lp0() (in module LinProc), 14
lyap() (in module Lyap), 12

M
mu() (in module LinProc), 14

P
pickup

() (in module Schauder), 9
pickup_mu

() (in module NonparBayes), 11
pickup_Sigma

() (in module NonparBayes), 11

Q
quvar() (in module Diffusion), 8

R
r() (in module LinProc), 14
randnormal() (in module Randm), 13

19

SDE Documentation, Release 0.3.0

randorth() (in module Randm), 13
randposdef() (in module Randm), 13
randstable() (in module Randm), 13
randunitary() (in module Randm), 13

S
sample_p() (in module LinProc), 14
sample_p0() (in module LinProc), 14
stable() (in module LinProc), 15
syl() (in module Lyap), 12
symslv() (in module Lyap), 12

V
vectoroflevels() (in module Schauder), 10
visualize_posterior() (in module NonparBayes), 11

Y
ydx() (in module Diffusion), 8

20 Index

	Layout
	Method
	Data structures
	Location of the documentation
	Module Diffusion
	Module Schauder
	Module NonparBayes
	Module Lyap.jl
	Module Randm
	LinProc

	Indices and tables

