

    
      
          
            
  
Julia package SDE.jl


Layout

The package contains the following modules:


	Diffusion

	Generate Ito processes and diffusions

	NonparBayes

	Nonparametrically estimate the drift of a diffusion

	Schauder

	Provides rudimentary finite element methods and Schauder basis for NonparBayes

	Lyap

	Computes the solution of the continuous Lyapunov equation, useful for the generation of linear processes

	Randm

	Random symmetric, positive definite, stable matrix for testing purposes.

	LinProc

	Homogeneous vector linear processes with additive noise






Method

The producure in NonparBayes is a Julia implementation of nonparametric Bayesian inference for
“continuously” observed one dimensional diffusion processes with unit diffusion coefficient. The drift
is modeled as linear combination of hierarchical Faber–Schauder basis functions with a Gaussian prior
on the coefficients. This incorporates a Brownian motion like prior on the drift function. The posterior is
then computed using Gaussian conjugacy.

This is work in progress.




Data structures

I did not introduce type definitions for stochastic processes and use vectors/arrays, so it should be easy do wrap Dataframes around everything. For the meanwhile, I like the natural notation obtained by having just vectors/arrays for dW and dt


N = 100
t = linspace(0., 1., N)
dt = diff(t)
X = ito(2dt + 2dW1(dt))





Location of the documentation

https://sdejl.readthedocs.org
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Module Diffusion


Introduction

The functions in this module operate on three conceptual different objects, (although they
are currently just represented as vectors and arrays.)

Stochastic processes, denoted x, y, w are arrays of values which
are sampled at distance dt, ds, where dt, ds are either scalar or
Vectors length(dt)=size(W)[end].
Stochastic differentials are denoted dx, dw etc., and are first differences of
stochastic processes. Finally, t can denote the total time or correspond to a vector of
size(W)[end] sampling time poins.

Note the following convention: In analogy with the definition of the Ito integral,


intxdw[i] = x[i]](w[i+1]-w[i]) (== x[i]dw[i])


and


length(w) = length(dw) + 1





Reference


	
Diffusion.brown1(u, t, n::Integer)

	Compute n equally spaced samples of 1d Brownian motion in
the interval [0,t], starting from point u






	
Diffusion.brown(u, t, d::Integer, n::Integer)

	Simulate n equally spaced samples of d-dimensional Brownian motion in
the interval [0,t], starting from point u






	
Diffusion.dW1(t, n::Integer)

	
Diffusion.dW(t, d::Integer, n::Integer)

	Simulate a 1-dimensional (d-dimensional)
Wiener differential with n values in the
the interval [0,t], starting from point u






	
Diffusion.dW(dt::Vector, d::Integer)

	Simulate a d-dimensional Wiener differential sampled at
time points with distances given by the vector dt






	
Diffusion.ito(y, dx)

	
Diffusion.ito(dx)

	
Diffusion.cumsum0(dx)

	Integrate a valued stochastic process with respect to a stochastic differential.
R, R^2 (d rows, n columns), R^3.

ito(dx) is a shortcut for ito(ones(size(dx)[end], dx).
So ito(dx) is just a cumsum0 function which is a inverse to dx = diff([0, x1, x2, x3,...]).






	
..(y, dx)

	
Diffusion.ydx(y, dx)

	y .. dx returns the stochastic differential ydx defined by the property


ito(ydx) == ito(y, dx)







	
Diffusion.bb(u, v, t, n)

	Simulates n equidistant samples of a Brownian bridge from point u to v in time t






	
Diffusion.dWcond1(v, t, n)

	Simulates n equidistant samples of a “bridge noise”: that is a Wiener differential dW
conditioned on W(t) = v






	
Diffusion.aug(dw, dt, n)

	
Diffusion.aug(dt, n)

	Take Wiener differential sampled at dt and return Wiener differential subsampled n times
between each observation with new length length(dw)*n.
aug(dt,n) computes the corresponding subsample of times.






	
Diffusion.quvar(x)

	Computes quadratic variation of x.






	
Diffusion.bracket(x)

	
Diffusion.bracket(x, y)

	Computes quadratic variation process of x (of x and y).






	
Diffusion.euler(t0, u, b, sigma, dt, dw)

	
Diffusion.euler(t0, u, b, sigma, dt)

	Simulates a 1-dimensional diffusion process using the Euler-Maruyama approximation
with drift b(t,x) and diffusion coefficient sigma(t,x)
starting in (t0, u) using dt and given Wiener differential dw.











          

      

      

    

  

    
      
          
            
  
Module Schauder


Introduction

In the following hat(x) is the piecewise linear function taking values
values (0,0), (0.5,1), (1,0) on the interval [0,1] and 0 elsewhere.

The Schauder basis of level L > 0 in the interval [a,b] can be defined recursively
from n = 2^L-1 classical finite elements \(\psi_i(x)\) on the grid


a + (1:n)/(n+1)*(b-a).


Assume that f is expressed as linear combination


\(f(x) = \sum_{i =1}^n c_i \psi_i(x)\)


with


\(\psi_{2j-1}(x) = hat(nx-j + 1)\)  for \(j = 1 \dots 2^{L-1}\)


and


\(\psi_{2j}(x) = hat(nx-j + 1/2)\)  for \(j = 1 \dots 2^{L-1}-1\)


Note that these coefficients are easy to find for the finite element basis, just

function fe_transf(f, a,b, L)
    n = 2^L-1
    return map(f, a + (1:n)/(n+1)*(b-a))
end





Then the coefficients of the same function with respect to the Schauder basis


\(f(x) = \sum_{i = 1}^n c_i \phi_i(x)\)


where for L = 2


\(\phi_2(x) = 2 hat(x)\)

\(\phi_1(x) = \psi_1(x) = hat(2x)\)

\(\phi_3(x) = \psi_3(x) = hat(2x-1)\)




can be computed directly, but also using the recursion


\(\phi_2(x) = \psi_1(x) + 2\psi_2(x) + \psi_2(x)\)


This can be implemented inplace (see pickup()), and is used throughout.

for l in 1:L-1
        b = sub(c, 2^l:2^l:n)
        b[:] *= 0.5
        a = sub(c, 2^(l-1):2^l:n-2^(l-1))
        a[:] -= b[:]
        a = sub(c, 2^l+2^(l-1):2^l:n)
        a[:] -= b[1:length(a)]
end








Reference


	
Schauder.pickup!(x)

	Inplace computation of 2^L-1 Schauder-Faber coefficients from
2^L-1 overlapping finite-element coefficients x.

– inverse of Schauder.drop

– L = level(xj)






	
Schauder.drop!(x)

	Inplace computation of 2^L-1 finite element coefficients from
2^L-1 Faber schauder coefficients x.

– inverse of Schauder.pickup






	
Schauder.finger_permute(x)

	Reorders vector x or matrix A according to the reordering
of the elements of a Faber-Schauder-basis from
left to right, from bottom to top.






	
Schauder.finger_pm(L, K)

	Returns the permuation used in finger_permute.
Memoized reordering of faber schauder elements from low level to high level. The last K elements/rows are left untouched.






	
Schauder.level(x)

	
	Gives the no. of levels of the biggest Schauder basis with less then length(x) elements.

	level(x) = ilogb(size(x,1)+1)








	
Schauder.level(x, K)

	Gives the no. of levels l of the biggest Schauder basis with less then length(x) elements
and the number of additional elements n-2^l+1.






	
Schauder.vectoroflevels(L, K)

	Gives a vector with the level of the hierarchical elements.






	
Schauder.hat(x)

	Hat function. Piecewise linear functions with values (-inf,0), (0,0),(0.5,1), (1,0), (inf,0).
– x vector or number











          

      

      

    

  

    
      
          
            
  
Module NonparBayes


Introduction

The procedure is as follows.
Consider the diffusion process \((x_t\colon 0 \le t \le T)\) given by


\(dx_t = b(x_t) dt + dw_t\)


where the drift b is expressed as linear combination


\(f(x) = \sum_{i =1}^n c_i \phi_i(x)\)


(see Module Schauder) and
prior distribution on the coefficients


\(c_i \sim N(0,\xi_i)\)


Then the posterior distribution of \(b\) given observations \(x_t\) is given by


\(c_i | x_s \sim N(W^{-1}\mu, W^{-1})\)
\(W = \Sigma + (\operatorname{diag}(\xi))^{-1}\),


with the nxn-matrix


\(\Sigma_{ij} = \int_0^T \phi_i(x_t)\phi_j(x_t) dt\)


and the n-vector


\(\mu_i = \int_0^T \phi_i(x_t) d x_t\).


Using the recursion detailed in Module Schauder, one rather computes


\(\Sigma^\prime_{ij} = \int_0^T \psi_i(x_t)\psi_j(x_t) dt\)


and the n-vector


\(\mu^\prime_i = \int_0^T \psi_i(x_t) d x_t\)


and uses pickup_mu!(mu) and pickup_Sigma!(Sigma) to obtain \(\mu\) and \(\Sigma\).




Optional additional basis functions

One can extend the basis by additional functions, implemented are variants. B1 includes a constant, B2 two linear functions


	B1

	\(\phi_1 \dots \phi_n, c\)

	B2

	\(\phi_1 \dots \phi_n, \max(1-x, 0), \max(x, 0)\)



To compute mu, use

mu = pickup_mu!(fe_mu(y,L, 0))
mu = fe_muB1(mu, y);





or

mu = pickup_mu!(fe_mu(y,L, 0))
mu = fe_muB2(mu, y);








Reference

Functions taking y` without parameter [a,b] expect ``y to be shifted into the intervall [0,1].


	
NonparBayes.pickup_mu!(mu)

	computes mu from mu’






	
NonparBayes.drop_mu!(mu)

	Computes mu’ from mu.






	
NonparBayes.pickup_Sigma!(Sigma)

	Transforms Sigma’ into Sigma.






	
NonparBayes.drop_Sigma!(Sigma)

	Transforms Sigma into Sigma’.






	
NonparBayes.fe_mu(y, L, K)

	Computes mu’ from the observations y using 2^L-1 basis elements
and returns a vector with K trailing zeros (in case one ones to customize
the basis.






	
NonparBayes.fe_muB1(mu, y)

	Append \(\mu_{n+1} = \int_0^T \phi_{n+1} d x_t\) with \(\phi_{n+1} = 1\).






	
NonparBayes.fe_muB2(mu, y)

	Append \(\mu_{n+1} = \int_0^T \phi_{n+1} d x_t\) with \(\phi_{n+1} =  \max(1-x, 0)\)
and \(\mu_{n+2} = \int_0^T \phi_{n+2} d x_t\) with \(\phi_{n+2} =  \max(x, 0)\)






	
NonparBayes.fe_Sigma(y, dt, L)

	Computes the matrix Sigma’ from the observations y uniformly spaced at distance dt
using 2^L-1 basis elements.






	
NonparBayes.bayes_drift(x, dt, a, b, L, xirem, beta, B)

	Performs estimation of drift on observations x in [a,b] spaced at distance dt
using the Schauder basis of level L and level wise coefficients decaying at rate beta.
A Brownian motion like prior is obtained for beta= 0.5. The K remaining optional
basiselements have variance xirem.

The result is returned as [designp coeff se] where coeff are coefficients of finite elements with maximum at the designpoints designp and standard error se.

Observations outside [a,b] may influence the result through phi_{n+1}, ..., phi_{n+K}






	
NonparBayes.visualize_posterior(post[, truedrift])

	Plot 2r*se wide marginal credibility bands, where post is the result of
bayes_drift and truedrift the true drift (if known :-) ).











          

      

      

    

  

    
      
          
            
  
Module Lyap.jl


Documentation



	DESCRIPTION

	Solves the real matrix equation A’X + XA = C, where A and C are
constant matrices of dimension n x n with C=C’.  The matrix A
is transformed into upper Schur form and the transformed system
is solved by back substitution.  The option is provided to input
the Schur form directly and bypass the Schur decomposition.
This equation is also know as continuous Lyapunov equation.

The method of Bartels and Stewart is used.
The system is first reduced such that A is in upper real schur
form. The resulting triangular system is solved via back-substitution.
Has a unique solution, if A and -A have no common eigenvalues, which is guaranteed
if A is stable (and the real part of each eigenvalue is negative).



	HISTORY

	The classic ACM algorithm from Bartels and Stewart was implemented E. Armstrong
as part of ORACLS – optimal regulator algorithms for the control of linear systems.
The implementation from the nasa cosmic archive is reported to be in the
public domain, under the terms of Title 17, Chapter 1,
Section 105 of the US Code. This is rather direct translation of forementioned
implementation into Julia, put under MIT licence as Julia.

	REFERENCES

	
	Bartels, R.H.; and Stewart, G.W.: Algorithm 432 - Solution of
the Matrix Equation AX + XB = C.  Commun. ACM, vol. 15, no. 9,
Sept. 1972, pp. 820-826.





	SEE ALSO

	atxpxa in ORACLS, strsyl, dtrsyl in LAPACK, lyap in GNU Octave









Reference


	
Lyap.issquare(a)

	Checks if matrix a is square.






	
Lyap.lyap(a, cc)

	Solves the real matrix equation A’X + XA = C, where A and C are
constant matrices of dimension n x n with C=C’.  The matrix A
is transformed into upper Schur form and the transformed system
is solved by back substitution.  The option is provided to input
the Schur form directly and bypass the Schur decomposition.
This equation is also know as continuous Lyapunov equation.

The method of Bartels and Stewart is used.
The system is first reduced such that A is in upper real schur
form. The resulting triangular system is solved via back-substitution.
Has a unique solution, if A and -A have no common eigenvalues, which is guaranteed
if A is stable (and the real part of each eigenvalue is negative).






	
Lyap.symslv(a, c)

	Solves A'*x + x*A = C, where C is symmetric and A is in upper real schur form.
via back substitution






	
Lyap.syl(a, b, c)

	Solves the Sylvester equation AX + XB = C, where C is symmetric and
A and -B have no common eigenvalues using (inefficient)
algebraic approach via the Kronecker product, see http://en.wikipedia.org/wiki/Sylvester_equation











          

      

      

    

  

    
      
          
            
  
Module Randm


Introduction

Random matrices for testing purposes. I did not figure out the actual distributions
the matrices are drawn from.




Reference


	
Randm.randposdef(d)

	Random positive definite matrix of dimension d.






	
Randm.randstable(d)

	Random stable matrix (matrix with eigenvalues with negative real part) with
dimension d.






	
Randm.randunitary(d)

	Random unitary matrix of dimension d.






	
Randm.randorth(d)

	Orthogonal matrix drawn according to the Haar measure on the group of orthogonal matrices.






	
Randm.randnormal(d)

	Random normal matrix.











          

      

      

    

  

    
      
          
            
  
LinProc


Introduction

This module covers


	The simulation of multivariate diffusion processes with a simple Euler scheme

	the simulation of (Vector) Ornstein–Uhlenbeck processes

	the simulation of Ornstein–Uhlenbeck bridges

	mean and covariance functions and transition density of Ornstein–Uhlenbeck processes

	the Monte Carlo simulation of Diffusion bridges



A multivariate diffusion process  is the solution to the stochastic differential equation (SDE)


\(dX_t = b(t, X_t) \sigma(t, X_t) d W_t\)


where W_t is a d-dimension Wiener process, b is a vector valued drift function and a = sigma sigma' the diffusion matrix.
The function


eulerv(t0, u, b(s,x), sigma(s,x), Dt, DW::Matrix)


implements the multivariate euler scheme, starting in the point u the same conventions as in module Diffusion apply.

A vector linear process  (Ornstein–Uhlenbeck process) is of the special form


\(dX_t = B X_t + \beta + \sigma d W_t\)


where B is a stable matrix and beta a vector, A = sigma sigma'

A conditional vector linear processes (Ornstein–Uhlenbeck bridges so to say)
ending at time T in point v are given by


\(dX^\star_t = B X_t + \beta + A r(s, X^\star_t)  + \sigma d W_t\)


where  \(r(t,x) = \operatorname{grad}_x \log p(t,x; T, v)\) and
p is the transition density of the corresponding linear process X.

The parameter lambda is the solution to the Lyapunov equation B lambda + lambda B' = -A, see module Lyap,


lambda = lyap(B', -A)


If B = 0, lambda = lyap(B',-A) is not defined, provide lambda = inv(a) as argument to the functions instead.




Reference


	
LinProc.mu(h, x, B, beta)

	Expectation \(E_x(X_{t})\)






	
LinProc.K(h, B, lambda)

	Covariance matrix \(Cov(X_{t}, X_{t + h})\)






	
LinProc.r(h, x, v, B, beta, lambda)

	Returns \(r(t,x) = \operatorname{grad}_x \log p(t,x; T, v)\) where
p is the transition density of the linear process, used by Bstar.






	
LinProc.H(h, B, lambda)

	Negative Hessian of \(\log p(t,x; T, v)\) as a function of x.






	
LinProc.bstar(T, v, b, beta, a, lambda)

	Returns the drift function of a vector linear process bridge which end at time T in point v.






	
LinProc.bcirc(T, v, b, beta, a, lambda)

	Drift for guided proposal derived from a vector linear process bridge which end at time T in point v.






	
LinProc.llikeliXcirc(t, T, Xcirc, b, a, B, beta, lambda)

	Loglikelihood (log weights) of Xcirc with respect to Xstar.


t, T – timespan
Xcirc – bridge proposal (drift Bcirc and diffusion coefficient sigma)
b, sigma – diffusion coefficient sigma target
B, beta – drift b(x) = Bx + beta of Xtilde
lambda – solution of the lyapunov equation for Xtilde







	
LinProc.lp(h, x, y, b, beta, lambda)

	Returns \(log p(t,x; T, y)\), the log transition density of the linear process, h = T - t






	
LinProc.sample_p(h, x, b, beta, lambda)

	Samples from the transition density of the linear process, h = T - t.






	
LinProc.linexact(u, B, beta, lambda, dt)

	Simulate linear process starting in u on a discrete grid dt from its transition probability,
corresponding to drift parameters B, beta and Lyapunov matrix lambda.






	
LinProc.linll(X, B, beta, lambda, dt)

	Compute log likelihood evaluated in B, beta and Lyapunov matrix lambda
for a observed linear process on a discrete grid dt from its transition density.






	
LinProc.lp0(h, x, y, mu, gamma)

	Returns \(log p(t,x; T, y)\), the log transition density of a Brownian motion with drift mu and diffusion a=inv(gamma), h = T - t






	
LinProc.sample_p0(h, x, mu, l)

	Samples from the transition density a affine Brownian motion. Takes the Cholesky
factor as argument.


l = chol(a)







	
LinProc.eulerv(t0, u, v, b(s, x), sigma(s, x), Dt, DW::Matrix)

	
LinProc.eulerv(t0, u, b, sigma, dt, dw::Matrix) = eulerv(t0, u, NaN, b, sigma, dt, dw::Matrix)

	Multivariate euler scheme, starting in u, fixing X[N] = v if v!=NaN (this makes sense, if
b pulls X towards v.).  dw – Wiener differential with n values in the
the interval [t0,sum(dt)] sampled at timepoints t0+Dt[1], t0 + Dt[1] + Dt[2], ...
b, sigma – drift and diffusion coefficient.

Example:


Dt = diff(linspace(0., T, N))
DW = randn(2, N-1) .* sqrt(dt)
dt = Dt[1] yy = euler(0.0, u, b, sigma, Dt, DW)







	
LinProc.stable(Y, d, ep)

	Return real stable d-dim matrix with real eigenvalues smaller than ep parametrized with a vector of length d*d,

For maximum likelihood estimation we need to search the maximum over all stable matrices.
These are matrices with eigenvalues with strictly negative real parts.
We obtain a dxd stable matrix as difference of a antisymmetric matrix and a positive definite matrix.
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