

Julia package SDE.jl

Layout

The main module

	SDE

	Simulate diffusion processes in one or more dimension.
Especially simulate vector linear processes / Ornstein-Uhlenbeck processes
Monte Carlo sample diffusion bridges, diffusion processes conditioned to hit a point v at a prescribed time T
Functions for transition density, mean and covariance of linear processes
Perform Monte Carlo estimates of transition densities of general diffusion processes

with a Submodule

	SDE.Schauder

	To nonparametrically estimate the drift of a diffusion with unit diffusion coefficient
using a Schauder wavelet “basis”

The package contains the additional modules:

	Diffusion

	Alternative API to generate Ito processes and diffusions

	Randm

	Random symmetric, positive definite, stable matrix for testing purposes.

Method

The producure in SDE.Schauder is a Julia implementation of nonparametric Bayesian inference for
“continuously” observed one dimensional diffusion processes with unit diffusion coefficient. The drift
is modeled as linear combination of hierarchical Faber–Schauder basis functions with a Gaussian prior
on the coefficients. This incorporates a Brownian motion like prior on the drift function. The posterior is
then computed using Gaussian conjugacy.

This is work in progress.

Location of the documentation

https://sdejl.readthedocs.org

Contents:

	SDE
	Miscellaneous

	Stochastic Processes

	Module Schauder
	Introduction

	Reference

	Introduction

	Optional additional basis functions

	Reference

	Module Diffusion
	Introduction

	Reference

	Module Randm
	Introduction

	Reference

Indices and tables

	Index

	Module Index

	Search Page

SDE

Miscellaneous

	
SDE.syl(a, b, c)

	Solves the Sylvester equation AX + XB = C, where C is symmetric and
A and -B have no common eigenvalues using (inefficient)
algebraic approach via the Kronecker product, see http://en.wikipedia.org/wiki/Sylvester_equation

Stochastic Processes

	
SDE.mu(t, x, T, P)

	Expectation \(E_(t,x)(X_{T})\)

	
SDE.K(t, T, P)

	Covariance matrix \(Cov(X_{T}-x_t)\)

	
SDE.H(t, T, P)

	Negative Hessian of \(\log p(t,x; T, v)\) as a function of x.

	
SDE.r(t, x, T, v, P)

	Returns \(r(t,x) = \operatorname{grad}_x \log p(t,x; T, v)\) where
p is the transition density of the process P.

	
SDE.bstar(t, x, T, v, P::MvPro)

	Returns the drift function of a vector linear process bridge which end at time T in point v.

	
SDE.bcirc(t, x, T, v, Pt::Union(MvLinPro, MvAffPro), P::MvPro)

	Drift for guided proposal derived from a vector linear process bridge which end at time T in point v.

	
SDE.lp(t, x, T, y, P)

	Returns \(log p(t,x; T, y)\), the log transition density of the process P

	
SDE.samplep(t, x, T, P)

	Samples from the transition density of the process P.

	
SDE.exact(u, tt, P)

	Simulate process P starting in u on a discrete grid tt from its transition probability.

	
SDE.ll(X, P)

	Compute log likelihood evaluated in B, beta and Lyapunov matrix lambda
for a observed linear process on a discrete grid dt from its transition density.

	
SDE.lp(s, x, t, y, P)

	Returns \(log p(t,x; T, y)\), the log transition density

	
SDE.euler(u, W::CTPath, P::CTPro)

	Multivariate euler scheme for U, starting in u using the same time grid as the underlying Wiener process W.

	
SDE.llikeliXcirc(t, T, Xcirc, b, a, B, beta, lambda)

	Loglikelihood (log weights) of Xcirc with respect to Xstar.

t, T – timespan
Xcirc – bridge proposal (drift Bcirc and diffusion coefficient sigma)
b, sigma – diffusion coefficient sigma target
B, beta – drift b(x) = Bx + beta of Xtilde
lambda – solution of the lyapunov equation for Xtilde

	
SDE.tofs(s, tmin, T)

	
SDE.soft(t, tmin, T)

	Time change mapping s in [0, T=t_2 - t_1] (U-time) to t in [t_1, t_2] (X-time), and inverse.

	
SDE.Vs(s, T, v, B, beta)

	
SDE.dotVs(s, T, v, B, beta)

	Time changed V and time changed time derivative of V for generation of U

	
SDE.XofU(UU, tmin, T, v, P)

	U is the scaled and time changed process

U(s)= exp(s/2.)*(v(s) - X(tofs(s)))

XofU transforms entire process U sampled at time points ss to X at tt.

	
SDE.stable(Y, d, ep)

	Return real stable d-dim matrix with real eigenvalues smaller than -ep parametrized with a vector of length d*d,

For maximum likelihood estimation we need to search the maximum over all stable matrices.
These are matrices with eigenvalues with strictly negative real parts.
We obtain a dxd stable matrix as difference of a antisymmetric matrix and a positive definite matrix.

Module Schauder

Introduction

In the following hat(x) is the piecewise linear function taking values
values (0,0), (0.5,1), (1,0) on the interval [0,1] and 0 elsewhere.

The Schauder basis of level L > 0 in the interval [a,b] can be defined recursively
from n = 2^L-1 classical finite elements \(\psi_i(x)\) on the grid

a + (1:n)/(n+1)*(b-a).

Assume that f is expressed as linear combination

\(f(x) = \sum_{i =1}^n c_i \psi_i(x)\)

with

\(\psi_{2j-1}(x) = hat(nx-j + 1)\) for \(j = 1 \dots 2^{L-1}\)

and

\(\psi_{2j}(x) = hat(nx-j + 1/2)\) for \(j = 1 \dots 2^{L-1}-1\)

Note that these coefficients are easy to find for the finite element basis, just

function fe_transf(f, a,b, L)
 n = 2^L-1
 return map(f, a + (1:n)/(n+1)*(b-a))
end

Then the coefficients of the same function with respect to the Schauder basis

\(f(x) = \sum_{i = 1}^n c_i \phi_i(x)\)

where for L = 2

\(\phi_2(x) = 2 hat(x)\)

\(\phi_1(x) = \psi_1(x) = hat(2x)\)

\(\phi_3(x) = \psi_3(x) = hat(2x-1)\)

can be computed directly, but also using the recursion

\(\phi_2(x) = \psi_1(x) + 2\psi_2(x) + \psi_2(x)\)

This can be implemented inplace (see pickup()), and is used throughout.

for l in 1:L-1
 b = sub(c, 2^l:2^l:n)
 b[:] *= 0.5
 a = sub(c, 2^(l-1):2^l:n-2^(l-1))
 a[:] -= b[:]
 a = sub(c, 2^l+2^(l-1):2^l:n)
 a[:] -= b[1:length(a)]
end

Reference

	
Schauder.pickup!(x)

	Inplace computation of 2^L-1 Schauder-Faber coefficients from
2^L-1 overlapping finite-element coefficients x.

– inverse of Schauder.drop

– L = level(xj)

	
Schauder.drop!(x)

	Inplace computation of 2^L-1 finite element coefficients from
2^L-1 Faber schauder coefficients x.

– inverse of Schauder.pickup

	
Schauder.finger_permute(x)

	Reorders vector x or matrix A according to the reordering
of the elements of a Faber-Schauder-basis from
left to right, from bottom to top.

	
Schauder.finger_pm(L, K)

	Returns the permuation used in finger_permute.
Memoized reordering of faber schauder elements from low level to high level. The last K elements/rows are left untouched.

	
Schauder.level(x)

	
	Gives the no. of levels of the biggest Schauder basis with less then length(x) elements.

	level(x) = ilogb(size(x,1)+1)

	
Schauder.level(x, K)

	Gives the no. of levels l of the biggest Schauder basis with less then length(x) elements
and the number of additional elements n-2^l+1.

	
Schauder.vectoroflevels(L, K)

	Gives a vector with the level of the hierarchical elements.

	
Schauder.hat(x)

	Hat function. Piecewise linear functions with values (-inf,0), (0,0),(0.5,1), (1,0), (inf,0).
– x vector or number

Introduction

The procedure is as follows.
Consider the diffusion process \((x_t\colon 0 \le t \le T)\) given by

\(dx_t = b(x_t) dt + dw_t\)

where the drift b is expressed as linear combination

\(f(x) = \sum_{i =1}^n c_i \phi_i(x)\)

(see Module Schauder) and
prior distribution on the coefficients

\(c_i \sim N(0,\xi_i)\)

Then the posterior distribution of \(b\) given observations \(x_t\) is given by

\(c_i | x_s \sim N(W^{-1}\mu, W^{-1})\)
\(W = \Sigma + (\operatorname{diag}(\xi))^{-1}\),

with the nxn-matrix

\(\Sigma_{ij} = \int_0^T \phi_i(x_t)\phi_j(x_t) dt\)

and the n-vector

\(\mu_i = \int_0^T \phi_i(x_t) d x_t\).

Using the recursion detailed in Module Schauder, one rather computes

\(\Sigma^\prime_{ij} = \int_0^T \psi_i(x_t)\psi_j(x_t) dt\)

and the n-vector

\(\mu^\prime_i = \int_0^T \psi_i(x_t) d x_t\)

and uses pickup_mu!(mu) and pickup_Sigma!(Sigma) to obtain \(\mu\) and \(\Sigma\).

Optional additional basis functions

One can extend the basis by additional functions, implemented are variants. B1 includes a constant, B2 two linear functions

	B1

	\(\phi_1 \dots \phi_n, c\)

	B2

	\(\phi_1 \dots \phi_n, \max(1-x, 0), \max(x, 0)\)

To compute mu, use

mu = pickup_mu!(fe_mu(y,L, 0))
mu = fe_muB1(mu, y);

or

mu = pickup_mu!(fe_mu(y,L, 0))
mu = fe_muB2(mu, y);

Reference

Functions taking y` without parameter [a,b] expect ``y to be shifted into the intervall [0,1].

	
Schauder.pickup_mu!(mu)

	computes mu from mu’

	
Schauder.drop_mu!(mu)

	Computes mu’ from mu.

	
Schauder.pickup_Sigma!(Sigma)

	Transforms Sigma’ into Sigma.

	
Schauder.drop_Sigma!(Sigma)

	Transforms Sigma into Sigma’.

	
Schauder.fe_mu(y, L, K)

	Computes mu’ from the observations y using 2^L-1 basis elements
and returns a vector with K trailing zeros (in case one ones to customize
the basis.

	
Schauder.fe_muB1(mu, y)

	Append \(\mu_{n+1} = \int_0^T \phi_{n+1} d x_t\) with \(\phi_{n+1} = 1\).

	
Schauder.fe_muB2(mu, y)

	Append \(\mu_{n+1} = \int_0^T \phi_{n+1} d x_t\) with \(\phi_{n+1} = \max(1-x, 0)\)
and \(\mu_{n+2} = \int_0^T \phi_{n+2} d x_t\) with \(\phi_{n+2} = \max(x, 0)\)

	
Schauder.fe_Sigma(y, dt, L)

	Computes the matrix Sigma’ from the observations y uniformly spaced at distance dt
using 2^L-1 basis elements.

	
Schauder.bayes_drift(x, dt, a, b, L, xirem, beta, B)

	Performs estimation of drift on observations x in [a,b] spaced at distance dt
using the Schauder basis of level L and level wise coefficients decaying at rate beta.
A Brownian motion like prior is obtained for beta= 0.5. The K remaining optional
basiselements have variance xirem.

The result is returned as [designp coeff se] where coeff are coefficients of finite elements with maximum at the designpoints designp and standard error se.

Observations outside [a,b] may influence the result through phi_{n+1}, ..., phi_{n+K}

Module Diffusion

Introduction

The functions in this module operate on three conceptual different objects, (although they
are currently just represented as vectors and arrays.)

Stochastic processes, denoted x, y, w are arrays of values which
are sampled at distance dt, ds, where dt, ds are either scalar or
Vectors length(dt)=size(W)[end].
Stochastic differentials are denoted dx, dw etc., and are first differences of
stochastic processes. Finally, t can denote the total time or correspond to a vector of
size(W)[end] sampling time poins.

Note the following convention: In analogy with the definition of the Ito integral,

intxdw[i] = x[i]](w[i+1]-w[i]) (== x[i]dw[i])

and

length(w) = length(dw) + 1

Reference

	
Diffusion.brown1(u, t, n::Integer)

	Compute n equally spaced samples of 1d Brownian motion in
the interval [0,t], starting from point u

	
Diffusion.brown(u, t, d::Integer, n::Integer)

	Simulate n equally spaced samples of d-dimensional Brownian motion in
the interval [0,t], starting from point u

	
Diffusion.dW1(t, n::Integer)

	
Diffusion.dW(t, d::Integer, n::Integer)

	Simulate a 1-dimensional (d-dimensional)
Wiener differential with n values in the
the interval [0,t], starting from point u

	
Diffusion.dW(dt::Vector, d::Integer)

	Simulate a d-dimensional Wiener differential sampled at
time points with distances given by the vector dt

	
Diffusion.ito(y, dx)

	
Diffusion.ito(dx)

	
Diffusion.cumsum0(dx)

	Integrate a valued stochastic process with respect to a stochastic differential.
R, R^2 (d rows, n columns), R^3.

ito(dx) is a shortcut for ito(ones(size(dx)[end], dx).
So ito(dx) is just a cumsum0 function which is a inverse to dx = diff([0, x1, x2, x3,...]).

	
..(y, dx)

	
Diffusion.ydx(y, dx)

	y .. dx returns the stochastic differential ydx defined by the property

ito(ydx) == ito(y, dx)

	
Diffusion.bb(u, v, t, n)

	Simulates n equidistant samples of a Brownian bridge from point u to v in time t

	
Diffusion.dWcond1(v, t, n)

	Simulates n equidistant samples of a “bridge noise”: that is a Wiener differential dW
conditioned on W(t) = v

	
Diffusion.aug(dw, dt, n)

	
Diffusion.aug(dt, n)

	Take Wiener differential sampled at dt and return Wiener differential subsampled n times
between each observation with new length length(dw)*n.
aug(dt,n) computes the corresponding subsample of times.

	
Diffusion.quvar(x)

	Computes quadratic variation of x.

	
Diffusion.bracket(x)

	
Diffusion.bracket(x, y)

	Computes quadratic variation process of x (of x and y).

	
Diffusion.euler(t0, u, b, sigma, dt, dw)

	
Diffusion.euler(t0, u, b, sigma, dt)

	Simulates a 1-dimensional diffusion process using the Euler-Maruyama approximation
with drift b(t,x) and diffusion coefficient sigma(t,x)
starting in (t0, u) using dt and given Wiener differential dw.

Module Randm

Introduction

Random matrices for testing purposes. I did not figure out the actual distributions
the matrices are drawn from.

Reference

	
Randm.randposdef(d)

	Random positive definite matrix of dimension d.

	
Randm.randstable(d)

	Random stable matrix (matrix with eigenvalues with negative real part) with
dimension d.

	
Randm.randunitary(d)

	Random unitary matrix of dimension d.

	
Randm.randorth(d)

	Orthogonal matrix drawn according to the Haar measure on the group of orthogonal matrices.

	
Randm.randnormal(d)

	Random normal matrix.

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | K
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | V
 | X
 | Y

Symbols

 	
 	..() (in module Diffusion)

A

 	
 	aug() (in module Diffusion)

B

 	
 	bayes_drift() (in module Schauder)

 	bb() (in module Diffusion)

 	bcirc() (in module SDE)

 	
 	bracket() (in module Diffusion)

 	brown() (in module Diffusion)

 	brown1() (in module Diffusion)

 	bstar() (in module SDE)

C

 	
 	cumsum0() (in module Diffusion)

D

 	
 	dotVs() (in module SDE)

 	drop!() (in module Schauder)

 	drop_mu!() (in module Schauder)

 	
 	drop_Sigma!() (in module Schauder)

 	dW() (in module Diffusion), [1]

 	dW1() (in module Diffusion)

 	dWcond1() (in module Diffusion)

E

 	
 	euler() (in module Diffusion)

 	(in module SDE)

 	
 	exact() (in module SDE)

F

 	
 	fe_mu() (in module Schauder)

 	fe_muB1() (in module Schauder)

 	fe_muB2() (in module Schauder)

 	
 	fe_Sigma() (in module Schauder)

 	finger_permute() (in module Schauder)

 	finger_pm() (in module Schauder)

H

 	
 	H() (in module SDE)

 	
 	hat() (in module Schauder)

I

 	
 	ito() (in module Diffusion)

K

 	
 	K() (in module SDE)

L

 	
 	level() (in module Schauder), [1]

 	ll() (in module SDE)

 	
 	llikeliXcirc() (in module SDE)

 	lp() (in module SDE), [1]

M

 	
 	mu() (in module SDE)

P

 	
 	pickup!() (in module Schauder)

 	
 	pickup_mu!() (in module Schauder)

 	pickup_Sigma!() (in module Schauder)

Q

 	
 	quvar() (in module Diffusion)

R

 	
 	r() (in module SDE)

 	randnormal() (in module Randm)

 	randorth() (in module Randm)

 	
 	randposdef() (in module Randm)

 	randstable() (in module Randm)

 	randunitary() (in module Randm)

S

 	
 	samplep() (in module SDE)

 	soft() (in module SDE)

 	
 	stable() (in module SDE)

 	syl() (in module SDE)

T

 	
 	tofs() (in module SDE)

V

 	
 	vectoroflevels() (in module Schauder)

 	
 	Vs() (in module SDE)

X

 	
 	XofU() (in module SDE)

Y

 	
 	ydx() (in module Diffusion)

 nav.xhtml

 Table of Contents

 		Julia package SDE.jl

 		SDE

 		Miscellaneous

 		Stochastic Processes

 		Module Schauder

 		Introduction

 		Reference

 		Introduction

 		Optional additional basis functions

 		Reference

 		Module Diffusion

 		Introduction

 		Reference

 		Module Randm

 		Introduction

 		Reference

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

